1. Вперше в межах комплексного математичного моделювання поставлено і розв’язано задачу, в якій визначено залежність ефективності ХМ і ТН від ступеня термогідравлічної незворотності процесів у випарнику, конденсаторі та елементах трубної обв’язки термоперетворювачів з використанням нового запропонованого автором ентропійного методу визначення питомої теплопродуктивності ТН і холодопродуктивності ХМ при неізобарному фазовому перетворенні в конденсаторі та випарнику. 2. Встановлено, що в циклах теплових насосів при фіксованому значенні гідравлічного опору DРк у конденсаторі збільшення втрат тиску DРв у випарнику приводить до зменшення коефіцієнта трансформації m. При фіксованому DРв збільшення DРк приводить до підвищення m. При постійному значенні DРк збільшення DРв зумовлює істотне зменшення холодильного коефіцієнта e. Наприклад, підвищенню DРв від 0 до 50 кПа відповідає зменшення e в середньому (для різних холодоагентів) від 15 до 20 %. 3. Визначено ступінь чутливості ефективності циклів ХМ і ТН до зміни гідравлічних опорів при використанні різних холодоагентів. Показано, що чим більша молекулярна маса і чим менша питома теплота пароутворення холодоагенту, тим істотнішим виявляється вплив втрат тиску. 4. За результами комплексного дослідження взаємопов’язаного впливу термогідравлічної незворотності у випарнику, конденсаторі та елементах трубної обв’язки одержано узагальнене кореляційне співвідношення, що відображає ранжируваний взаємопов’язаний ступінь впливу основних незалежних чинників, що визначають рівень термодинамічної ефективності холодильної машини і теплового насоса. 5. Вперше в дослідженні холодильних машин запропоновано методику аналізу й показано вплив на енергетичну ефективність циклу параметра складності схемної структури циклу при варійованих його температурних межах для різних холодоагентів. З’ясовано, що вплив параметра складності S на значення відношення більш істотний, ніж вплив температурних меж циклу. Одержані в роботі регресійні залежності для різних робочих речовин дають можливість прогнозувати вплив втрат тиску в циклі на ефективність холодильних машин з урахуванням складності їх технологічної схеми. 6. Запропонована система тепло- і холодопостачання за схемою переведення роботи ХМ у режим ТН є ефективним способом енергозбереження й охорони навколишнього середовища. Об’єднання в єдиний комплекс ХМ і ТН дозволяє створити безвідходні технології в системах споживання теплової енергії на різних температурних рівнях. Проте висновок про доцільність заміни традиційних способів отримання теплоти шляхом упровадження теплонасосних технологій кожного разу потребує обґрунтування. 7. На підставі проведеного аналізу головних аспектів комплексного підходу до розширення застосування аміаку в холодильній промисловості запропоновано ряд схемних рішень для підвищення ефективності холодильних установок. 8. Запропоновано інженерну методику розрахунку, яка дозволяє на стадії проектування теплонасосних установок, створюваних на основі холодильних машин, що серійно випускаються, погоджувати роботу термотрансформаторів для функціонування як у режимі холодильних машин (наприклад, літній період роботи у складі системи кондиціонування повітря), так і в опалювальний період при реверсуванні струму холодоагенту. 9. Випробування натурного промислового фрагменту холодильної станції дозволили встановити, що непогодження теоретичних та експериментальних значень гідравлічних опорів, холодопродуктивності і холодильного коефіцієнта не виходять за межі, регламентовані відповідними стандартами на проведення випробувань холодильної техніки. 10. На підставі задовільного збігу теоретичних та експериментальних результатів розрахункову модель процесів у ХМ, запропоновану в даній роботі, можна вважати адекватною і з достатнім ступенем точності застосованою для виконання інженерних розрахунків при розв’язанні як прямих, так і зворотних задач, що виникають при проектуванні холодильної техніки. 11. Реконструкція схеми трубної обв’язки промислової ХМ, що була виконана з використанням розрахункової методики, сформульованої у даній роботі, і подальша експериментальна перевірка показали, що за рахунок поліпшення термогідравлічної якості схеми вдалося збільшити холодильний коефіцієнт на 14,2 % і підвищити холодопродуктивність на 11,1 %. |