У дисертації вперше в теорії виміру одержується застосування теорії нескінченних поглинаючих систем, індексованих множинами, складнішими, ніж множина натуральних чисел, навіть і незліченними. Основні результати дисертації доповнюють вже відомі результати про топологічну будову гіперпросторів, одержані в теорії виміру. У дисертації отримано такі результати: – описано зліченну -поглинаючу систему у гільбертовому кубі, яка може бути модельною для зліченних -поглинаючих систем довільного впорядкування; – описано -поглинаючу систему у гільбертовому кубі, яка може бути модельною для зліченної, частково впорядкованої -поглинаючої системи; – описано борелівський тип гіперпростору компактів, вимір Гаусдорфа яких не перевищує довільного, наперед заданого, дійсного додатнього числа; – для (відп. , ) описано топологію системи (відп. ) гіперпросторів компактів (континуумів) заданого виміру Гаусдорфа у просторі (відп. ), де – довільна зліченна підмножина множини (відп. ) з класу зліченних множин (тут – клас зліченних множин, який складається з цілком впорядкованих множин, множин, скінченна похідна яких дорівнює , та множин, порядково ізоморфних множині раціональних чисел ), для простору , – області в та – зв'язного -вимірного компактного ріманового многовиду; – доведено, що система (відп. ) є -поглинаючою у просторі (відп. ) у випадку – незліченної множини, а саме, коли () для (відп. ); – для (відп. ) описано топологію пари (відп. ), для простору , – області в та – зв'язного -вимірного компактного ріманового многовиду; – описано топологію зліченної частково впорядкованої системи гіперпросторів компактів заданого виміру Лебега і виміру Гаусдорфа у гільбертовому кубі, де вимір Лебега пробігає множину невід'ємних цілих чисел, а вимір Гаусдорфа – довільну зліченну, впорядковану за типом , підмножину в ; – описано топологію зліченної, впорядкованої за типом , системи просторів функцій, означених на , графіки яких мають заданий вимір Гаусдорфа. Результати роботи мають теоретичний характер і можуть бути використані в топології нескінченновимірних многовидів, теорії виміру, фрактальній геометрії, теорії функцій. |