Кожан Роман Володимирович. Категорні властивості просторів ймовірнісних мір та гіперпросторів включення. : Дис... канд. наук: 01.01.01 - 2008.
Анотація до роботи:
Кожан Р.В. Категорні властивості просторів ймовірнісних мір та гіперпросторів включення. – Рукопис.
Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.01.01 – математичний аналіз – Львівський національний університет імені Івана Франка, Львів, 2007.
В даній роботі вводиться поняття відкритої мультикомутативності коваріантних функторів у категорії компактів та інших топологічних категоріях, яке поєднує в собі поняття відкритості та бікомутативності. Це дозволяє виділити клас функторів, які природньо поєднують в собі ці дві властивості. Формулюються критерії відкритої мультикомутативності. А саме, встановлена еквівалентність відкритої мультикомутативності зі скінченною відкритою мультикомутативністю; ця еквівалентність значно спрощує дослідження. Зокрема, для встановлення відкритої мультикомутативності достатньо перевірити, що слабко-нормальний відкритий, бікомутативний функтор зберігає відкрито-мультикомутативні конуси складені зі скінченних просторів. Також встановлено таку еквівалентність цього поняття на скінченних та нескінченних діаграмах: якщо слабко-нормальний функтор зберігає відкрито-мультикомутативні конуси на скінченними діаграмами, то він зберігає їх і над всіма діаграмами. Цей результат також дозволяє значно спростити аналіз і обмежитись розглядом досить вузького кола діаграм.
В розділі 3 доведено, що такі функтори, як функтор ймовірнісних мір, гіперпростору, суперрозширення, гіперпростору включення, опуклих підмножин, неперервних зверху ємностей, а також їх композиції є відкрито-мультикомутативними. Це в свою чергу доводить непорожність класу відкрито-мультикомутативних функторів в категорії Comp.
Важливим питанням категорної топології є продовження функторів на ширші категорії. Тому також є природним питання поширення означення відкритої мультикомутативності на функтори, які діють в категорії цілком регулярних просторів Tych. В розділі 4 зроблені кроки у цьому напрямку, а сааме, розглянуто питання відкритої бікомутативності продовжень функтора ймовірнісних мір. Доведено, що такі продовження, як функтор мір з компактними носіями і функтор мір Радона, є відкрито-бікомутативними.
Публікації автора:
Kozhan, R. V. Open-multicommutativity of some functors related to the functor of probability measures // Matematychni Studii – 2005. – Vol.23, №4.
Кожан, Р.В., Про неперервнiсть вiдповiдностей ймовiрнiсних мiр в категорiї цiлком регулярних просторiв // Науковий вісник Чернівецького університету: збірник наукових праць. Математика. – 2006. – Т. 314-315. – c.94—99.
Kozhan, R.V., Open-multicommutativity of the functor of upper-continuous capacities // Вісник Львів. Ун-ту. Сер. Мех.-матем. – 2006. – V.66.
Kozhan, R.V. On сontinuity of correspondences of probability measures in the category of Tychonoff spaces // Міжнародна коференція "Geometric Topology: Infinite-Dimensional Topology, Absolute Extensors, Applications", Львів, 2004, тези доповідей.
Kozhan, R.V. Open-multicommutativity of the functor of probability measures // Четверта міжнародна алгебраїчна конференція, Львів, 2003, тези доповідей.
Kozhan, R.V. Open-multicommutativity of normal functors // Міжнародний конгрес математиків "International Mediterranean Congress of Mathematics", м. Альмерія, 2005, тези доповідей.